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Theory of the almost-highest wave. 
Part 2. Matching and analytic extension 
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and Institute of Oceanographic Sciences, Wormley, Surrey 
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Most methods of calculating steep gravity waves (of less than the maximum height) 
encounter difficulties when the radius of curvature R a t  the crest becomes small 
compared with the wavelength L,  or some other typical length scale. This paper 
describes a new method of calculation valid when RIL is small. 

For deep-water waves, a parameter E is defined as equal to q/2Bc,, where q is the 
particle speed at the wave crest, in a frame of reference moving with the phase speed c. 
Hence E is of order (R/L)$. Three zones are distinguished: (1) an inner zone of linear 
dimensions E ~ L  near the crest, where the flow is described by the inner solution found 
previously by Longuet-Higgins & Fox (1977); (2) an outer zone of dimensions O(L) 
where the flow is given by a perturbed form of Michell’s solution for the highest wave; 
and (3) a matching zone of width O(eL). The matching procedure involves complex 
powers of 6 .  

The resulting expression for the square of the phase velocity is found to be 

c2 = (g/k)(l-1931- 1~18e3cos(2~1431n~+2~22)}  

(see figures 5 a, b ) ,  which is in remarkable agreement with independent calculations 
based on high-order series. I n  particular, the existence of turning-points in the phase 
velocity as a function of wave height is confirmed. 

Similar expressions, valid to order e3, are found for the wave height, the potential 
and kinetic energies and the momentum flux or impulse of the wave. 

The velocity field is extended analytically across the free surface, revealing the 
existence of branch-points of order 4, as predicted by Grant (1973). 

1. Introduction 
Most serious attempts to calculate the form of steep gravity waves on water of 

infinite depth have involved lengthy techniques, for example the summation of small 
amplitude expansions carried to very high order (Schwartz 1974; Longuet-Higgins 
1975; Cokelet 1977) or the solution of integral equations (Milne-Thomson 1968) or 
other numerical methods (Yamada 1957; Sasaki & Murakami 1973) all of which 
become increasingly laborious as the wave of maximum height is approached. 

Interest in the problem has nonetheless increased not only because of possible ap- 
plications but also in view of the unexpected discovery that several overall properties 
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of the wave motion - for example the momentum, energy and speed of propaga- 
tion - are not steadily increasing functions of the wave amplitude a t  a given wave- 
length, but instead have maxima well within the possible range of wave steepness 
(Longuet-Higgins 1975; Cokelet 1977). 

The present paper continues the development of a new and simpler approach to the 
calculation of steep gravity waves, begun in an earlier paper (Longuet-Higgins & 
Fox 1977, to  be referred to as paper I). It was there shown that in any progressive 
gravity wave, whether in deep or in shallow water, the flow near the wave crest tends 
to a certain asymptotic form, within a distance from the crest comparable to the 
radius of curvature 1/K. Details of this limiting flow are given in figures 6, 7 and 9 
of paper I .  

I n  the present paper it will be shown how this flow may be matched, as an ‘inner 
solution’ valid near the crest, to an outer solution representing the flow in the rest 
of the wave. Two terms are sufficient to provide an accurate description of the wave, 
thus greatly simplifying calculations. 

In  $2  we first give some details of the matching procedure, in terms of a small 
parameter e of order q/c,where q is the particle speed a t  the crest, in a frame moving 
with the phase speed c. It turns out that the matching must take account of terms which 
are oscillatory in the physical co-ordinates, as pointed out in paper I. In  Q 3 we derive 
the lowest-order outer solution for waves in deep water by a method essentially 
similar to Michell’s (1893) but carried to greater accuracy; and in the following section 
(94) we derive the lowest-order perturbation to this flow due to the presence of the 
rounded crest. The final matching is carried out in 3 5, where asymptotic expressions 
are found for the height of the waves, the phase speed and other quantities in terms 
of E .  These simple expressions are compared with those obtained by much longer 
methods and are found to be in good agreement. 

2. The matching technique 
Our general method is applicable to waves in shallow water or indeed to any steady, 

free-surface flow with a sharply curved crest. To fix the ideas, however, consider waves 
in deep water as in figure 1. Define 

E = q/2tco7 (2.1) 

where c, is the speed of waves of wavelength L and infinitesimal amplitude: 

It will be convenient to choose units such that 

(2.3) g = 1, L = 27T, e,  = 1. 

We distinguish three different zones (figure 1). The inner zone I is a region of 
dimensions O(e2) surrounding the wave crest. I n  this zone, typical velocities are of 
order e, typical lengths (such as the radius of curvature at the crest) are of order et7 and 
the complex velocity potential x is typically of order s3. In the outer zone I11 all 
velocities, lengths and potentials are of order 1. I n  the intermediate zone 11, whose 
scale is of order 6 ,  velocities are of order €4 while x is of order e%. 
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FIQURE 1. Sketch ehowing regions of validity for the inner solution (zone I), the  outer solution 
(zone 111) and matching (zone II). 

Consider first the inner zone I. Here we may write 

x = e3x1, z = e2x1, 

where z1 and x1 are of order unity. In  paper I it was shown that the outer expansion 
of the flow in this zone, in the limit E --f 0, was given by 

ixi N 51 - &(Q<ii” + Q*x?“‘, (2 .5)  

(2.6) 

so that ,U = 0.7143 . . . . (2.7) 

z1 - ($ixJt + A ( i ~ ~ ) - i - ~ f i  +A*(iX1)-i+iP, (2.8) 

A = 0-201e-047i. (2.9) 

where cl = 8x8,  Q is a constant, Q* its complex conjugate, and ,U is the positive real 
root of the equation (imp) tanh (@p) = m/(2 x 34), 

For large values of cl (or zl) equation (2.5) is clearly equivalent to 

where A is a constant. From the calculations in paper I it was found that 

The first term on the right of (2 .8 )  represents the Stokes (1880) 120’ corner flow, and 
the remaining terms represent displacements vanishing (in an oscillatory fashion) as 
lxll (or /zll) tends to infinity. 

In  the outer zone 111, we know from Grant (1973) that an expansion valid for the 
sharp-crested wave ( E  = 0 )  as z-+ 0 is 

z - ( s ix )% +B(iX)”, (2.10) 

(2.11) 

It was pointed out in paper I that by writing v = - (Q + A )  equation (2.1 1 )  reduces to 

(2.12) 

[compare with ( 2 . 6 ) ] .  We now require that v > 8, i.e. h < - 1 .  The smallest such root is 

where B and v are constants, with v satisfying 

tan (&nv) = - (4 + 3v)/3fv. 

(@A)  tan (&nh) = - n/( 2 x 34) 

h = - 1.8027 ... . 
The constant B will be determined in $3. 

(2.13) 

26-2 
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Now to match the solutions in zone I1 we write 

z = € Z 2 ,  x = d X 2 ,  (2.14) 

where z2, x2 are to be of order 1. Since then 

we assume that in zone I1 
z1 = €-1z2, x1 = E-%xJ (2.15) 

(2.16) 

In  terms of z and x, 
z N ($ix)3 + B(ix)-i-A + Ae3+3ifl(ix)-4-@ + A*s3-3iP(iX)-f+ir (2.17) 

as x -+ 0. So the solution in zone I11 must be that for the sharp-crested wave, with 
asymptotic form ( 2 .  lo), together with a first correction for non-zero E with asymptotic 

As3+3ip(ix)-4-iP + A *,3-3ip(ix)-4fi/4 (2.18) 
form 

as x + 0. This correction will be calculated in 8 4. Similarly the solution in zone I is 
the flow described in paper 1,with a correction for non-zero E which has the asymptotic 

BE-3-3h(iX1)-#-n (2.19) form 

as x1 -+ co. 

3. The outer solution: lowest order 
As before, we take axes moving horizontally with the phase speed c ,  and treat 

x = $ + ill. as the independent variable. We seek z = x + iy  so as to satisfy the boundary 

(3.1) 
condition 

2 R e z ) d z l d ~ I ~  = 1 

on the free surface $ = 0. The motion is periodic in $ with period 2 m .  The origin of x 
being taken at  a wave crest, we know that the solution must have a singularity there 
of the form 

which may be more conveniently written 

z - ($c) f  (1 - e-ix/c)P, ( 3 . 2 )  

while as $+,-a so z N ixlc. Modifying the expansion proposed by Michell (1893)) 
we first map the flow region in the complex potential plane 

tc. < 0, --?T < #/c < z 

(figure 2) into a circle in the w plane (figure 3) by the transformation 

( 1  + s) e-ixlc+ ( 1  - s) 
( l - s ) e - i x / c + ( l + s ) ’  

w =  

where s is a real parameter at  our disposal. As @ --f - co, that is as 

a+ (1 --s)/(1 +s) 

(3.3) 

(the point I”  in figure 3 ) ,  we require that the flow shall tend to a uniform stream: 
z - i x / c  + constant. z - i x / c  is single-valued, bounded and hence analytic in the neigh- 
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bourhood of I". In  view of (3.2) we write 

- i x / c  = - ( 1  - e-ixic ) + ( I  - e-ixlc)# (a, +a,@ +a,w2 + ...), (3.4) 

where the coefficients on are real and the term - ( 1  - e-iXlc) has been added in order to 
cancel the - ix/c  term on the left-hand side to order x near the crest, so improving 
the rate of convergence of the power series there. On the free surface we have + = 0, 
Iw1 = 1,  and 2 Re z = ( 1  - e - i X l c ) j d  + complex conjugate, (3.5) 

where 
d ( w )  = a,+a,o+ ... 

On differentiating (3.4) we have 

- ic d z / d x  = ( 1 - e-ixIc)-b (( 1 - s) w - ( 1  + s)}-19, (3.6) 

where 
( ( 1  +s) - ( 1  -s) 0 

a ( w )  = { ( 1 - s ) w - ( l + s ) }  

+ ${( 1 - s) - ( 1  + s) w }  (ao + a,w + . . .) 
+ (2s)-l(1- w )  {( 1 - s) w -  ( 1  + s)} {( 1 - s) - ( 1  +s) w}(al + 2a,w + . . .). 

Now substituting these expressions in the free-surface condition (3.1) we obtain 

= c"( 1 - 8 )  w - ( 1  + s)} {( 1 - s) - ( 1  + s) w}.  (3.7) 
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FIGURE 3. The o plane. 
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10 
10 
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20 
20 

20 
40 
60 

20 
40 
60 

20 
40 
60 

40 
60 

Maximum 
percentage 

C2 error 

1.1927 
1.1928 
1.1929 

1.1929 
1.1930 
1.1930 

1.1713 
1.1931 
1.1931 

1.1701 
1.1924 

0-6 
0.5 
0.4 

0.5 
0.3 
0.3 
5 
0.3 
0.2 

5 
0.6 

TABLE 1. Estimates of ca for limiting waves in deep water, with the 
corresponding maximum error in the free-surface condition. 

Note that, since w = eie on the free surface, 

1 - e-ix!c & Now 
is the complex conjugate of a(@). 

1 - w  (1+2?)-(1-8)w-1 ( 1 - e f x / c )  = (- 1 - a-1 (1 + s) - (1  - 8) w 

The first factor (so defined that - Qn < arg ( - w)* < in) has a simple Fourier series 
expansion on 1 0 1  = 1, while the second and third factors may be expanded as power 
series in w-l and w respectively, convergent on Iw (  = 1. We may follow a similar 
procedure with the fractional-power terms in d and a. Then the left-hand side of 
(3.7) may be expressed as a series in positive and negative powers of w ,  or equivalently 
as a Fourier series in arg w. 

To solve (3.7) we then truncate the series (3.4) after N - 1 terms, and equate coeffi- 
cients of the first N Fourier components. This gives N equations for the N unknowns 
a,, a,, . . . , aN-2 and c2. This procedure was programmed in FORTRAN IV using the 
routine COBPAF of the Nottingham Algorithms Group Library to find a solution of 
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rn 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

a m  
1.4676 

- 0.1098 
0.0616 

- 0.0452 
0.0315 

0.0176 

0.01 03 

0,0062 
- 0.0048 

0.0038 

- 0.0239 

- 0.0136 

- 0.0080 

m 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

am 
- 0.0029 

0.0024 
- 0.0018 

0.0015 
- 0.001 1 
0*0010 

- 0*0007 
0.0006 

- 0.0004 
0.0004 

- 0-0002 
0.0003 

- 0*0001 
0~0002 

TABLE 2. Coefficients a, in bhe series for t'he lowest-order outer solution 
when s = 10 and N = 40 or 60. 

~ ~ ~~ 

the N x AT system of nonlinear algebraic equations, and was run on theIBM370/166at 
Cambridge University. Although there was no assurance that such a system would 
have a unique solution, in practice the routine always converged rapidly to a particular 
set of values for the unknowns independently of the starting conditions. 

As a check, the values of z and d z l d x  were computed from (3.4) and (3.6) at points 
on the free surface, and were substituted in the left-hand side of the surface condition 
(3.1). Table 1 shows the maximum departure of the value from unity, together with 

FIGURE 4. The real and imaginary parts off = In {z- (# ix)8}  
on the free surface $ = 0, plotted as funct,ions of 4. 
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the value of c2 obtained, for a number of runs, in which for three different values of 
the parameter s the number of terms in the series was progressively increased. The 
error decreased steadily with an increasing number of terms, and c2 appears to con- 
verge to a value of 1.1931. The best rate of convergence was with s = 10. Table 2 shows 
the values of the first 26 coefficients in this case. 

In  figure 4, f = In { z  - ($ix)f}  has been plotted against In q5 for points on the free 
surface. If the asymptotic form as x-+ 0 is to be that of (2.10) we expect 

f N In B - i(& + A,) ni - (6 + A , )  In r$ 

= lnB+2.31i+1.471nq5. 

The computed points follow this form very closely, with the exception of those for 
very small q5, where the power series in w has insufficient resolution. The value of B is 
found to be 0.131. 

4. The outer solution: first correction 
We saw in $ 2  that the first correction to the outer solution is a function of x which 

has the asymptotic form (2.18) as x + 0 and which must be analytic in the flow region 
and symmetric about q5 = 0. We write 

z = z , ( i ~ ) + t z ~ + ~ ~ ~ ( l  -e-ix/c)-iP-~(b,+6,w+ ...) 
+ complex-conjugate function of w ,  (4.1) 

where the b, are complex, and z,(ix) is the lowest-order outer solution found in $3. 
We must also allow for a similar correction in the phase speed: 

(4.2) c2 = ci + e3+3i~c; + $-3i/lc*2 
1 .  

To ensure that (2.18) does indeed represent the limiting form of the correction terms 
in (4.1) as x -+ 0 we impose the condition 

b ,+b ,+b ,+  ... = c - i r j A .  (4.3) 

This form for z is then substituted in the free-surface condition (3.1) and terms of 
order e3 are collected. These are of two types: those involving ~ ~ + ~ ~ p  and the rest, 
multiplied by E s - 3 i ~ .  Since the free-surface condition must be satisfied for all values of e 
we equate coefficients of each of these terms separately. From (4.1) we have 

2 Re 2 = (1 - e-ix/c)%& + $ + 3 9  1 - e-ix)-f v 
- + e 3 - 3 i ~ (  1 - e-"/c)-+V + complex-conjugate terms, (4.4) 

where 2(1-w) -dp ] (bo+b,w+ ... ), v(0) = (( 1 + s) - ( I  - s) w 

B(0) = {V(w*)} * ,  

and & is as defmed in 3. On differentiating (4.1) we have 

- ic d z / d x  = (1 - e-ix/C)-f {( 1 - s) w - (1  + s)}-l&? 

+ e3+3iP( 1 - e-"xlc)--4 {( 1 - s) w - (1 + s)}-l23 
- + e3-3ip( 1 - e-iX/c)-* {( 1 - s) w - (1  + s)>-l9, (4.5) 
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m bnl m bm 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.1199 
0.0390 
0.0243 

- 0.0292 
0-0304 

0.0228 

0.0155 

- 0.0264 

- 0.0188 

- 0.0126 

- 0.1454 i 
0.1167 i 

- 0.0945 i 
0.0574 i 

-0.0421 i 
0.0265 i 

-0.0198 i 
0.0124 i 

- 0.0096 i 
0.0057 i 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0*0101 
- 0.0083 

0.0065 
- 0.0054 

0.0042 
- 0.0035 

0.0026 

0.0017 
- 0.0023 

- 0.0015 

- 0.0046 i 
0.0025 i 

- 0.0022 i 
0~0010 i 

-0.0011 i 
0-0003 i 

- 0.0005 i 
o*oooo i 

- 0.0002 i 
-0*0001 i 

TABLE 3. Coefficients bm for the first 20 terms in the series for the correction 
to the outer solution, when s = 10 and N = 40 or 60. 

where 

x [{( 1 - 8 )  - (1  + S) a} ( - 4 - ;,u) (b,  + b1w + .. .) 
+ ( 2 s ) ~ ~  {( 1 - S) - (1  + S) W }  {( 1 - S) 0 - (1 + s)} (1 - W )  (b1+ + ...)I, 

3 ( w )  = { 9 ( w * ) } * ,  

and &? is as defined in $3. 
The terms in ~ ~ + ~ ~ p  in (3.1) then give 

)" 
1 -w-1 

l -" )"( 1 -?( 
g(w)+g(w-  - w  ( l + s ) - ( l - S S ) w  ( 1 + 8 ) - ( 1 - 8 ) w - l  

x c4{( I - s) w - (1  + s)} {( 1 - 8) - (1 + 8) w},  (4.6) 

( l + s ) - ( l - s ) w  -* ] d ( w )  &?(w) 9 ( w - l ) .  + ( - 4Q ( (1  + s ) - ( l - s ) w - 1  

Consideration of the terms in ~ ~ - ~ ~ f l  leads to the complex conjugate of (4.6). 
By the same methods as were used in $ 3  both the right- and the left-hand side of 

(4.6) may be expressed as a Fourier series in argw. Truncating the series (4 .1)  after 
N - 1 terms, and equating the first N - 1 Fourier components of (4.6), we have, together 
with (4.3), N complex linear equations for the N complex unknowns b,, b,, . . . , bN-2 
and cf. 

5. Results: variation of wave properties 
As s = 1 0  gave the best convergence for the lowest-order outer solution we take this 

value in solving the linear equations of $ 4  for the first correction, with N = 60 as before. 
The series &' and &? have already beeen determined by the computations of $ 3. Table 3 
shows the values obtained for the coefficients b,, b,, . . . , bl0. We find also 

(5.1) ~2 - 0.5887e-09233i. 
1 -  
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FIQURE 5. (a) The square of the phase speed c in a deep-water wave, shown as a function of w'. 
The squares represent values obtained by Pad6 bummation of high-order series. The curve 
represents the asymptotic formula (5.3). (6) Enlargement of (a) at high values of w'. 
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N 

0.14; 

0.14C 

0.138 

0.136 

1 

0 0.5 1 .o 
w '  

0.9 0.95 1 .o 
0, 

FIGURE 6. (a)  The wave steepness 2a/L as a function of w'. The squares represent values obtained 
by Pad6 summation of high-order series. The curve represents the asymptotic formula (5.5). 
(a) Enlargement of (a)  at high values of w'. 
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0 0.5 I .o 
w ’  

FIGURE 7. The mean level as a function of d. The crosses are derived from a numerical integra- 
tion of the (asymptotic) surface profile. The curve represents the asymptotic formula (5.6). 

This yields an expression for c2 in dimensional terms, to order e3, 

c2 = (g/k){l.1931- 1~18e3c0s(2~143lne+2~22)}. ( 5 4  

In  figures 5 (a)  and ( b )  this has been plotted as a function of w’ = 1 - 2e2q,2/c2, where 
qt is the fluid velocity in the wave trough, and compared with the results of Longuet- 
Higgins (1975), derived from a small amplitude expansion. The agreement is remark- 
ably good, the two-term expansion for c2 apparently being a good representation for 
values of w’ down to about 0.6. In  particular the existence of a maximum in the wave 
speed at w’ N 0.95 is confirmed. This analysis also indicates that the wave speed 
passes through an infinite succession of maxima and minima as w‘ approaches 1. 

The wave steepness is given by 

a/n = (%trough - Xcrest)/2n, (5.3) 

where we know from (4.1) that 

and xCrest = €2, from the definition (2.1) of e together with the constant-pressure 
condition (3.1). Equation (5.3) then becomes 

a / n  = 0.14107 - 0~50n-1e2+0~160e3cos(2~1431n 6- 1.54), (5.4) 

which is shown in figures 6 ( a )  and (b)  as a function of w’, again compared with the 
results of Longuet-Higgins (1  975). The wave steepness is a monotonic function of w’, 
and also of (xCrest -Xtrough), the oscillatory behaviour of %trough being insufficient to 
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overcome the higher-order monotonic dependence of x,,,,~. The limiting, sharp- 
crested wave is therefore the highest, although not the fastest. 

The origin of co-ordinates in the analysis so far has been taken at a point above the 
wave crest such that the constant in the Bernoulli free-surface condition vanishes. For 
practical purposes it is sometimes more convenient to take the origin a t  the 
surface level of the wave, and so we now calculate this level, which is given by 

mean 

(5.5) 

upon integrating by parts. The lowest-order value of 5 is then obtained by substitution 
of the lowest-order outer solution of $3  in (5.5). To obtain the first correction to Z we 
may substitute the corrected form (4.1) for z in (5.5) and collect terms of order e3, 
neglecting terms of order e6. Equation (4.1) is valid only in the zones I1 and I11 defined 
in $2; however, the contribution it makes in zone I to the integral of (5.5) is of order 

E S J ~ ' * X - * ~ ~  = 0 ( € 4 )  

while the correction contribution in this zone, obtained from the inner solution, would 
be of order 

/:edX = O(e4). 

Neglecting these terms we obtain 

Z = k-l(0.59654- 0.588e3 cos (2-1431ne+ 2-22)}. (5.6) 

This expression has been plotted as a function of d in figure 7. The points marked for 
comparison were obtained directly from the computed form of the free surface for 
some values of E .  

6. Integral properties of the wave 
We consider next the mean potential energy V per unit area, which is given by 

upon integration by parts. Again we may find the lowest-order value and the first 
correction by substituting (4.1) in (6.1) and retaining terms up to order 8, the error 
arising from the use of the wrong form of the integrand in zone I being of order 



782 

0.04 

V 

0.02 

t 

M. X. Longuet-Higgins and M. J. H. Fox 

I I I I I I I I I 

0 

I I I I 1 I I I I 
0.5 
w )  

I .o 

FIGURE 8.  The dimensionless potential energy V in a deep-water wave as a function of 0'. 

The squares repreeent Pad6 sums; the curve represents the asymptotic formula (6.4). The crosses 
are derived from integration of the asymptotic profile. 

Figure 8 shows the resulting expression 

V = (g/k2){0~03457-0~169s3cos(2~1431nc+1~49)} (6.2) 

as a function of w' compared with the results of Longuet-Higgins (1975). 
The mean impulse I per unit area is defined by 

where v is the fluid velocity in the y direction. In  terms of the stream function $, 

On the surface $ = 0, and as x -+ co 

$+cx+c{- 1 +(a0+a,G+a2W2+ ...) 

+ s 3 + 3 i p ( b o + b 1 W +  ...)+ eS-Si'(b$ +b:G+ ...)} 
= KO + K ,  €3+3iP + KT s3-3i' 
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FIGURE 9. The dimensionless kinetic energy T as a function of w'. 
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say, from (3.4) and (4.1), where 7 j  = ( 1  -a) / ( l  +a). Equation (6.4) then becomes 
I = cx - KO - K,  63+3iP - K; e3-3iP. 

Using (5.6) we may write, in dimensional terms, 

I = g&-Q{O.07011 -0~364~3cos(2~1431ne+1~61)} .  (6.5) 

This is compared with the results of Longuet-Higgins (1975) in figure 10. 
Finally we can obtain an expression for the mean kinetic energy T per ynit area 

from the relationship 2T = cI (Levi-Civita 1924). From the above expresdions for 

and Iwe find T = gk-2{0~03829-0~215~3cos(2~1431n~+1~66)}  (6.6) 

correct to order e3. Figure 9 shows the corresponding comparison for this quantity. 

7. Analytic extension of the flow field 
A question of some interest is the nature of the singularities of the flow field in a 

steep gravity wave when this is continued analytically across the free surface. As 
the wave approaches its limiting form, with the length scale of the crest tending to 
zero, we expect that there will be singularities near the crest which will move towards 
the surface, finally coalescing to form the 120' corner singularity of the limiting wave. 
Grant ( 1  973) has suggested that these singularities, for a wave which has not attained 
the limiting form, must be of order one-half when the complex co-ordinate z = x + iy  is 
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expressed as a function of x. If these singularities are indeed of order one-half in x, 
then x - xo will behave locally as (z - zo)2 so there will be a stagnation point in the 
flow field with streamlines meeting at right angles. 

To investigate the question we analytically continued the flow near the crest &cross 
the free surface, first expanding the term (6 + ix)t in (6.4) of paper I as a power series 
in L, to give 

This power series was then reverted to give w as a power series in ( z -2 ) .  Finally we 
computed the [29,29] Pad6 approximant to this 60-term series and plotted contours of 

z = 2 + Z l W + Z , W 2 +  ... + Z N g N ,  N = 59. 

in the /3 plane. These are shown in figure 11.  One of the predicted stagnation points 
occurs on the real axis at x / l  = - 2.9. The regions of intense gradients of $ at larger 
negative values of z indicate poles of the Pad6 approximant, which may represent 
a branch cut along the - x axis. If this is of the form 

x - xo = C(Z - Z0)l’*, 
where n is an integer, then 

which is regular in the x plane, and so is consistent with Grant’s result. 

z - zo = C-n(x - xO)*, 
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FIGURE 11. Streamlines of the flow near the wave crest, extended analytically across 
the free surface (shown by hatching). From the solution of paper I. 

Figure 11 is constructed on the length scale of the inner solution, as in paper I, that 
is to say in units of 

1 = q"2g. 

According to the discussion in Q 3 above; this scale is of order c2L, where L is the overall 
wavelength. As E-+ 0 so the singularities of the inner solution will presumably approach 
the free surface from above and will ultimately coalesce at  the wave crest. 

8. Conclusion 
We have shown how the flow near the crest of a steep gravity wave may be matched 

to the flow in the main body of the wave by the addition of a correction at  order 
e3, E being a small parameter measuring the deviation from the limiting form. The 
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correction also involves imaginary powers of 6. The resulting expressions (5.2) for the 
wave speed, (5.4) for thesteepness, (6.2) and (6.6) for the potential and kinetic energies, 
and (6.5) for the impulse provide simpler and more accurate values of these quantities 
in steep waves than those available from small amplitude expansions. Confirmation is 
obtained of the existence of maxima of the wave speed, energies and impulse as func- 
tions of the amplitude. 

In  a subsequent paper it will be shown how the present method may be applied to 
the computation of steep solitary waves. 

M. J. H. Fox is indebted to the Natural Environment Research Council for a 
Research Studentship. 
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